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Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies
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~Received 25 June 2000!

Biological systems like the human cortex show homogeneous connectivity, with additional strongly hetero-
geneous projections from one area to another. Here we report how such a dynamic system performs a macro-
scopically coherent pattern formation. The connection topology is used systematically as a control parameter to
guide the neural system through a series of phase transitions. We discuss the example of a two-point connec-
tion, and its destabilization mechanism.

PACS number~s!: 87.18.Sn, 47.54.1r, 82.40.Ck, 84.35.1i
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A sheet composed of neurons or neural ensembles
vides a medium for spatiotemporal pattern formation of n
ral activity. In contrast to typical pattern formation in phys
cal or chemical systems@1,2#, a neural system has a spatial
variant connection topology in which a cortical area is n
only connected to its nearest neighbors, but also has pro
tions to distant areas. By these means the nervous sy
accomplishes a directed transfer of activity within a contin
ous sheet in which it would spread out uniformly otherwis
Such projections may not only serve to organize local
namics within cortical areas such as synchronization of lo
rhythms, but also contribute to the macroscopic organiza
of neural activity or global dynamics. Neurobiological the
ries of memory are severely weakened by their inability
specify how changes in synaptic strength, the presum
agency in encoding, alter complex network operations,
presumed substrates of memory expression@3#. We address
this problem for the dynamics on the network level such t
any local dynamics is represented by a scalar activity res
ing in a neural ensemble theory@5–8#. Local changes in
synaptic weights, however, will alter the connectivity of t
neural system, and by these means its global network
namics. Here we wish to study the properties and mec
nisms involved in the spatiotemporal neural pattern form
tion when the network’s connection topology is varied.
an example we discuss a two-point connection embedde
a spatially continuous, homogeneously connected med
and explain its underlying destabilization mechanism.

Following Jirsa and Haken@6#, we define the spatiotem
poral dynamics of a scalar neural fieldc(x,t) with spacex
PR n and timet P R as a nonlinear retarded integral equ
tion of the form

c~x,t !5E
A
dX f~x,X!S@c~X,T!1I ~X,T!#, ~1!

where f (x,X) describes a general connectivity function, a
S a nonlinear function ofc at a space pointX and a time
point T5t2ux2Xu/v, delayed by the propagation time ov
the distanceux2Xu. A denotes the surface area of the m
dium, andv the constant signal velocity.I (x,t) is the input
to the fieldc(x,t). Variations of this type of integral equa
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tion were widely used in theoretical neuroscience@4–8# to
describe the dynamics of neural activity. However, in
these cases, as well as generally in physical and chem
systems, translational variancef (x,X)5 f h(ux2Xu) was em-
ployed. Heref (x,X) will be typically decomposed into ho
mogeneous contributionsf h(ux2Xu) and heterogeneous pro
jectionsf i(x,X). We decompose the fieldc(x,t) into spatial
modesgn(x) and complex time dependent amplitudescn(t)
such asc(x,t)5(n52`

` gn(x)cn(t). The choice of the spa
tial basis functions will depend on the surfaceA and its
boundary conditions, but also on practical consideratio
about the type of connectivityf (x,X) and inputsI to the
system. We choose a polynomial representation of the n
linear function S in Eq. ~1! such as S(X,T)5a0

1a1c(X,T)1a2c2(X,T)1•••5(m50
` amcm(X,T), where

amPR, andI (X,T) is not considered~no restriction of gen-
erality!. By projection of Eq.~1! onto a spatial basis function
ḡq(x), and restricting its dimensionN to be finite, we obtain
a set ofN coupled integral equations

C~ t !5v E
2`

t

dt@G0~ t2t!1G1~ t2t!C~t!

1G2~ t2t!C~t!C~t!1•••#

5v E
2`

t

dt G0~ t2t!1LtC~ t !1Nt@C~ t !#, ~2!

where vector notation has been used:C(t)
5@•••cq(t)•••#T, G0(t2t)5@•••Gq(t2t)•••#T, G1(t2t)
5@Gqn(t2t)#, . . . . FormallyLt andNt represent the lin-
ear and nonlinear temporal evolution operators, andGq(t
2t) are tensor matrices composed of the spatial mo
gq(x) and the connectivity functionf (x,X). A linear stabil-
ity analysis of Eq.~2! yields the eigenvalue problem

det@e2ltLt~e2lt!2I #50, ~3!

whereI is the identity matrix. The entire complexity of th
connection topology is contained in the tensor matrixG1(t
2t), with Lt5v *2`

t dt G1(t2t), and the spatial basis
functions. The elements of the tensor matrixG1(t2t) are
Gqn(t2t)5a1(g21g1), where
8462 ©2000 The American Physical Society
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A
dx ḡq~x! f @x,x6v~ t2t!#gn@x6v~ t2t!#. ~4!

In a spatially invariant medium, the connectivity and t
contribution of the spatial modes factorize, resulting in
separation of spatial and temporal constraints. However,
is not given when projecting pathwaysf i(x,X) are intro-
duced into the neural sheet. Then truly spatiotemporal c
straints for the linear stability exist such thatCqn(x0)
5u*Adx ḡq(x)gn(x6x0) f i(x,x6x0)u represents a measur
with x05v(t2t) for the similarity between the spatia
modes and the heterogeneous pathways. The necessary
dition for destabilization of a pattern in Eq.~3! is Cqn(x0)
.0, such that only spatial modes may be destabilized
are sufficiently similar to the connectivity structure. The s
ficient condition for destabilization is Re(l).0 in Eq. ~3!.

The most elementary heterogeneous connection is a
connecting areax1 to areax2, because it is not only the
simplest heterogeneity, but also the heterogenous conne
ity matrix f i(x,x6x0) may be reconstructed by the sum
such two-point connections between areasxi andxj such as
f i(x,x6x0)5( i , j f i j d(x2xi)d(x2xj6x0), with the synap-

FIG. 1. The homogeneous connection topology is illustra
within a one-dimensional continuous medium whose activity is
scribed byc(x,t). A projection fromx1 to x2 introduces a hetero
geneity into the connectivity.
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tic weight f i j as a parameter. Typically such projections a
bilateral @9#, but not necessarily symmetric:f i j 5” f j i . Then
the similarity measureCqn(x0) can be written as

Cqn~x0!5U(
i , j

f i j ḡq~xi !gn~xi6x0!d~xi2xj6x0!U. ~5!

Realistically, the neocortex consists of many interareal tw
point connections, leading to hierarchical signal process
shemes in a continuous neural sheet, of which the b
known are the visual areas@9#. The brain provides a range o
varying connectivity structures allowing flexibility for th
same functions, generally assumed to be represented by
work operations. Such variablility is found in the reorgan
zation of neural function after brain injuries, which reflec
major changes in connectivity@10#. However, the brain also
provides mechanisms to alter these connectivities, such
long term potentiation@3#, which vary the location of the
terminals of pathways. An extraordinary, though patholo
cal, example of stable and coherent global pattern forma
in the brain network is found in epilepsies, which are oft
treated by changing its connectivity, i.e., by cutting the lin
ing pathways of the hemispheres, the corpus callossum
the following we wish to demonstrate how changes of
locations of a single pathway systematically control the p
tern formation of the entire network. We embed a hetero
neous two-point connection between locationsx1 andx2 in a
one-dimensional homogeneous medium. Its connecti
function f (x,X) shall be given by f (x,X)5 f (ux2Xu)
1 f 12(x,X)1 f 21(x,X), where f 12 is the link from x2 to x1,
and f 21 the link in the opposite direction, as illustrated in Fi
1. The distance between the inhomogeneous contribution
connectivity isd5ux2Xu, which serves as our control pa
rameter.

The dynamics of our example is given by Eq.~1!, in
which c̄(x,t)5*AdX c(X,t) is subtracted in the argumen
of the sigmoidS to reduce spatially uniform saturation e
fects @6,11#. Periodic boundaries are imposed. The conn
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FIG. 2. In the top row, the
similarity measure Cmm(x0) is
plotted for the spatial patternsm
51 and 2, in dependence onx0

and d. The plus signs show the
maxima of similarity, and identify
the regions in which a destabiliza
tion of an activity pattern may oc-
cur. In the bottom row, the eigen
value of a pattern, as a solution o
Eq. ~6!, is obtained graphically by
the minima in the contour plots
l2v. As the synaptic strength
f 125 f 21 is increased, the activity
pattern is destabilized when it
real part l of the eigenvalue
crosses the dotted zero line.
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FIG. 3. The transition behavior of the system in Eq.~1! is plotted in a space-time diagram~horizontal time, vertical space!. The originally
stable spatiotemporal pattern is destabilized by moving the location of the heterogeneous projection fromx25B to x25C. The units used
are the number of time steps and the arbitrary amplitude, respectively.
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tivities are specified asf (ux2Xu)5(2s)21 exp2ux2Xu/s,
f 12(x,X)51/2f 12d(x2x1)d(X2x2) and f 21(x,X)
51/2f 21d(x2x2)d(X2x1), wheres, f 12, and f 21 are con-
stant parameters. We choose the spatial basis system
spanned by the trigonometric functions sinnkx and cosmkx,
with n,m P Z and k52p/L, whereL is the length of the
one-dimensional closed loop.x150 is not varied, thereby
resulting in a pinning of the spatial modes aroundx50. The
nonlinear functionS in Eq. ~1! is assumed to be sigmoida
@6#. We study the stability of the originC050, and expand
Saround its deflection point,S@n#'an24/3a3n36•••. We
consider a spatial basis functiongm(x)5cosmkx to second
order in m, and truncate the expansion of the sigmoid af
the third order to study small amplitude dynamics. The sim
larity measureCmm(x0) is determined after Eq.~5!, and plot-
ted in dependence onx0 and d for the first two spatial pat-
ternsm51 and 2 in the top row of Fig. 2. The plus sign
show the maxima of the spatiotemporal similarity, and ide
tify the regions in which a destabilization of a pattern m
occur. Following the eigenvalue problem in Eq.~3!, we ob-
tain a transcendental equation for the linear stability of
mth spatial mode,
be

r
i-

-

e

@~ imv1lm!212v0~ imv1lm!1v0
21m2k2v2#,

~6!
~12d1e( imv1lm)d/v!2~ imv1lm1v0!v0a50,

where d152a/L( f 121 f 21)cosmkx1 cosmkx2. The real part
lm of its eigenvalue and its frequencyv can be determined
graphically from Eq.~6! as functions of the control param
eterd, and are shown in the bottom row of Fig. 2 for increa
ing synaptic strengthf 125 f 21.

The destabilization of a particular statem depends ond1
and d. For d1 ,d50, a purely homogeneous system is o
tained in which the origin is the only stable state for suf
ciently smalla. The introduction of a heterogeneous proje
tion f i j (x,X) may cause a desynchronization of th
connected areas, and thus a destabilization of the respe
spatial mode, resulting in a phase transition. As seen in
2 ~bottom row!, the complex conjugate pair of eigenvalu
cross the dotted zero line, and their real parts become p
tive, for increasing synaptic strengthf 125 f 21, causing a
Hopf bifurcation.

To investigate this dynamics numerically, we prepare
system in a well-defined state, and change the connec
topology by decreasing the control parameterd5ux12x2u.
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FIG. 4. The dominant spatia
patterns for varyingd are dis-
played in a spatiotemporal bifur
cation diagram. The same amou
of change ind, i.e., in the connec-
tivity, can have entirely different
effects depending on where thes
changes occur. For instance, a
increase ofd from 15 to 20 units
does not show any qualitative
changes in the dynamics, but a
increase ofd from 22 to 27 units
causes a phase transition. Direct
above, the amplitude~full circles!
and temporal frequency~donuts!
of the dominating pattern are plot
ted over the distanced. In the top
right corner, the power spectra o
the dominating patterns are plo
ted for all values ofd.
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Initially the system is prepared in a coherent oscillatory s
tionary state. Then the connectivity is changed by mov
the terminal of the inhomogeneity atx25B to a new location
x25C, whereas the other terminal stays constant atx15A.
The change in the connection topology destabilizes the in
stationary dynamics, and the system undergoes a transitio
a new stationary state. Without the inhomogeneous con
tions the zero-activity state is stationary and stable. The
rameters used for the integration of Eq.~1! are v53, G
5p, a52.5, s50.7, s15s250.1, and f 125 f 2151. The
time step isdt50.02, the space is divided into 100 units~see
Fig. 3!.

We investigate the dynamics in more detail by varying
control parameterd systematically from 0 to its maxima
value d5G. Due to the periodic boundary conditions,
valued.G/2 reduces the relative distance between the in
mogeneities. The inhomogeneity atx1 is kept constant, and
x25x11d is varied. For each distanced the system dynam
ics becomes stationary, and then the spatial pattern at m
mum amplitude is extracted and plotted overd in a bifurca-
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tion plot. These patterns are normalized with respect to
largest amplitude. Under variation ofd the system undergoe
a series of spatiotemporal bifurcations. Note that these
terns are not harmonic due to the inhomogeneous connec
topology. Shifts in the frequency spectra~plotted on the right
for all distancesd) are observed, even though the spat
pattern remains qualitatively the same. Hysteresis effects
found, resulting in an asymmetry of the bifurcation path b
low and aboved5G/2. Above the bifurcation plot the cor
responding amplitude~full circles! of the locationx1 and its
temporal frequency are plotted~donuts! over d ~see Fig. 4!.

We described macroscopic coherent pattern formation
a spatially continuous neural system system with a hetero
neous connection topology. Local changes of connec
pathways may guide the neural system through a serie
global spatiotemporal bifurcations.
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