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Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies
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Biological systems like the human cortex show homogeneous connectivity, with additional strongly hetero-
geneous projections from one area to another. Here we report how such a dynamic system performs a macro-
scopically coherent pattern formation. The connection topology is used systematically as a control parameter to
guide the neural system through a series of phase transitions. We discuss the example of a two-point connec-
tion, and its destabilization mechanism.

PACS numbds): 87.18.Sn, 47.54-r, 82.40.Ck, 84.35%i

A sheet composed of neurons or neural ensembles prdion were widely used in theoretical neuroscieride-§| to
vides a medium for spatiotemporal pattern formation of neudescribe the dynamics of neural activity. However, in all
ral activity. In contrast to typical pattern formation in physi- these cases, as well as generally in physical and chemical
cal or chemical systenj4,2], a neural system has a spatially systems, translational varianééx,X) = f,,(|x—X|) was em-
variant connection topology in which a cortical area is notployed. Heref(x,X) will be typically decomposed into ho-
only connected to its nearest neighbors, but also has projeeaogeneous contributiorfs(|x—X|) and heterogeneous pro-
tions to distant areas. By these means the nervous systeectionsf;(x,X). We decompose the fielgl(x,t) into spatial
accomplishes a directed transfer of activity within a continu-modesg,(x) and complex time dependent amplitudggt)
ous sheet in which it would spread out uniformly otherwise.such asy(x,t)==__..gn(X) #(t). The choice of the spa-
Such projections may not only serve to organize local dytial basis functions will depend on the surfadeand its
namics within cortical areas such as synchronization of locaboundary conditions, but also on practical considerations
rhythms, but also contribute to the macroscopic organizatiompout the type of connectivit§(x,X) and inputsl to the
of neural activity or global dynamics. Neurobiological theo- system. We choose a polynomial representation of the non-
ries of memory are severely weakened by their inability toinear function S in Eq. (1) such as S(X,T)=a,
specify how changes in synaptic strength, the presume‘ialz//(x,T)+azz//2(X,T)+--:Eﬁ]:Oamwm(X,T), where
agency in encoding, alter complex network operations, thg < and|(X,T) is not consideredno restriction of gen-

presumed substrates of memory expres¢&in\We address  ergjity). By projection of Eq(1) onto a spatial basis function
this problem for the dynamics on the network level such that-

any local dynamics is represented by a scalar activit resultgq(x)’ and restricting its dimensioN to be finite, we obtain
any: Yy P y Y resUly set ofN coupled integral equations
ing in a neural ensemble theof$—8§|. Local changes in
synaptic weights, however, will alter the connectivity of the
neural system, and by these means its global network dy- _
. . X Y(t)=v
namics. Here we wish to study the properties and mecha-
nisms involved in the spatiotemporal neural pattern forma-

" de{To(t— 1)+ Ty(t— W (7)

tion when the network’s connection topology is varied. As +(t=n)W(r)W(7)+- -]
an example we discuss a two-point connection embedded in ¢
a spatially continuous, homogeneously connected medium, =v f drTo(t— )+ L) +N[P ()], (2

and explain its underlying destabilization mechanism.
Following Jirsa and Hakef6], we define the spatiotem-

poral dynamics of a scalar neural fiefdx,t) with spacex  where vector notaton has been used¥(t)
eR" and timet e R as a nonlinear retarded integral equa- ... Y017, To(t—7)=[+-Tq(t—7)---1T, Ty(t—7)

tion of the form =[Cgn(t=7)1, ... . FormallyL' andN' represent the lin-
ear and nonlinear temporal evolution operators, &Rt
1//(x,t)=J dXF(x,X)S (X, T)+1(X,T)], (1) ~ —7) are tensor matrices composed of the spatial modes
A gq(X) and the connectivity functiofi(x,X). A linear stabil-

. o ) ity analysis of Eq.(2) yields the eigenvalue problem
wheref(x,X) describes a general connectivity function, and

S a nonlinear function of at a space poinK and a time
point T=t—|x—X|/v, delayed by the propagation time over
the distancdx—X|. A denotes the surface area of the me-
dium, andv the constant signal velocity(x,t) is the input ~ wherel is the identity matrix. The entire complexity of the
to the field ¢(x,t). Variations of this type of integral equa- connection topology is contained in the tensor matrit
—7), with L'=v f' _ d7Ty(t—7), and the spatial basis
functions. The elements of the tensor mathix(t—7) are
*Email address: jirsa@walt.ccs.fau.edu Fyn(t=7)=as(y + ¥*), where

defe MLY(e *)—1]=0, 3)

1063-651X/2000/6@)/84624)/$15.00 PRE 62 8462 ©2000 The American Physical Society



PRE 62 SPATIOTEMPORAL PATTERN FORMATION IN NEURA . .. 8463

tic weight f;; as a parameter. Typically such projections are
bilateral [9], but not necessarily symmetri¢;; # f;; . Then
the similarity measur€,,(x,) can be written as

Cyn(Xo) = 2} f1194(%) Gn(Xi = X0) (X — X = Xo)| . (5)

Realistically, the neocortex consists of many interareal two-
point connections, leading to hierarchical signal processing
shemes in a continuous neural sheet, of which the best

FIG. 1. The homogeneous connection topology is illustrated<NOWnN are the visual areg8]. The brain provides a range of
within a one-dimensional continuous medium whose activity is de-Varying connectivity structures allowing flexibility for the
scribed byy/(x,t). A projection fromx, to x, introduces a hetero- Same functions, generally assumed to be represented by net-
geneity into the connectivity. work operations. Such variablility is found in the reorgani-

zation of neural function after brain injuries, which reflects
. major changes in connectivifyl0]. However, the brain also
yi:f dx gy(x)f[x,x*+v(t—7)]g[x*v(t—7)]. (4)  provides mechanisms to alter these connectivities, such as
A long term potentiatiof 3], which vary the location of the
terminals of pathways. An extraordinary, though pathologi-
In a spatially invariant medium, the connectivity and thecal, example of stable and coherent global pattern formation
contribution of the spatial modes factorize, resulting in ain the brain network is found in epilepsies, which are often
separation of spatial and temporal constraints. However, thigeated by changing its connectivity, i.e., by cutting the link-
is not given when projecting pathway$(x,X) are intro- ing pathways of the hemispheres, the corpus callossum. In
duced into the neural sheet. Then truly spatiotemporal conthe following we wish to demonstrate how changes of the
straints for the linear stability exist such th&,,(xo) locations of a single pathway systematically control the pat-
=S A0X Gq(X)gn(X=X0) F(X,X£Xo)| represents a measure t€m formation of the entire network. We embed a heteroge-
with xg=v(t—7) for the similarity between the spatial heous two-point connection between locatiahsandx, in a
modes and the heterogeneous pathways. The necessary c8f€-dimensional homogeneous medium. Its connectivity
dition for destabilization of a pattern in E) is Cqn(xo)  function f(x,X) shall be given by f(x,X)=f(|x—X]|)
>0, such that only spatial modes may be destabilized that f12(X,X) +f21(x,X), wherefy, is the link fromx;, to xy,
are sufficiently similar to the connectivity structure. The suf-andfz; the link in the opposite direction, as illustrated in Fig.
ficient condition for destabilization is Re}>0 in Eq. (3). 1. The distance between the inhomogeneous contributions of

The most elementary heterogeneous connection is a fib@onnectivity isd=|x—X|, which serves as our control pa-
connecting area; to areax,, because it is not only the rameter.
simplest heterogeneity, but also the heterogenous connectiv- The dynamics of our example is given by Ed), in
ity matrix f;(x,x=xy) may be reconstructed by the sum of which #(x,t)=fdX #(X,t) is subtracted in the argument
such two-point connections between argaandx; such as  of the sigmoidS to reduce spatially uniform saturation ef-
fi(X,Xx*+Xg) =2 jfij (X —X;) 8(x—X; = Xo), with the synap- fects[6,11]. Periodic boundaries are imposed. The connec-
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FIG. 3. The transition behavior of the system in Eb.is plotted in a space-time diagra(imorizontal time, vertical spag€The originally
stable spatiotemporal pattern is destabilized by moving the location of the heterogeneous projectioy=fBito x,=C. The units used
are the number of time steps and the arbitrary amplitude, respectively.

tivities are specified ag(|x—X|)=(20)"* exp—|x—X|/o, [(iMo+\m) 2+ 2wo(imo+\y) + 03+ m?k?v?],
f1o(X, X) = 1/2f 156(X— X1) (X —X5) and f21(x,X) (6)
=1/2f5,6(x—X,) 8(X—X;), whereco, fi,, andf,; are con- (1—d;elmeAmdvy — (ime+ N+ wg) wea=0,

stant parameters. We choose the spatial basis system to be

spanned by the trigonometric functions skx and cosnkx where d; =2a/L(f,+ f5;)cosmkx cosmkx. The real part
with n,m e Z andk=2m/L, whereL is the length of the \,, of its eigenvalue and its frequenay can be determined
one-dimensional closed loop;=0 is not varied, thereby graphically from Eq.(6) as functions of the control param-
resulting in a pinning of the spatial modes arow0. The  eterd, and are shown in the bottom row of Fig. 2 for increas-
nonlinear functionS in Eq. (1) is assumed to be sigmoidal ing synaptic strengtlfi;,=f,;.

[6]. We study the stability of the origi’;=0, and expand The destabilization of a particular statedepends oru;
Saround its deflection poin§[n]~an—4/3a°n®+.... We andd. Ford;,d=0, a purely homogeneous system is ob-
consider a spatial basis functigp,(x) =cosmkxto second tained in which the origin is the only stable state for suffi-
order inm, and truncate the expansion of the sigmoid afterciently smalla. The introduction of a heterogeneous projec-
the third order to study small amplitude dynamics. The simi-fion fij(x,X) may cause a desynchronization of the
larity measureC,,(xo) is determined after Ed5), and plot- conqected areas, ar_ld thus a destablllz&_lt_lon of the respective
ted in dependence ax, andd for the first two spatial pat- spatial mode, resulting in a phase transition. As seen in Fig.

ternsm=1 and 2 in the top row of Fig. 2. The plus signs 2 (bottom row, the complex conjugate pair of eigenvalues

show the maxima of the spatiotemporal similarity, and iden.Cross the dotted zero line, and their real parts become posi-

tify the regions in which a destabilization of a pattern mayt've' fo_r Increasing synaptic strength,=f5,, causing a
. ; . Hopf bifurcation.
occur. Following the eigenvalue problem in E), we ob-

. . . I To investigate this dynamics numerically, we prepare the
tain a trqnscendental equation for the linear stability of thesystem in a well-defined state, and change the connection
mth spatial mode,

topology by decreasing the control paramedes |x; —X5|.

Y | . v oL ] FIG. 4. The dominant spatial
g.}(s) . === ,..r"'f 0.2 ] patterns for varyingd are dis-
o g 0.1 ] played in a spatiotemporal bifur-
0.05 e o
. S LA M J cation diagram. The same amount
= sl 2 d 10: 20: 30 A o of change ird, i.e., in the connec-

tivity, can have entirely different
effects depending on where these
changes occur. For instance, an
increase ofd from 15 to 20 units
does not show any qualitative
changes in the dynamics, but an
increase ofd from 22 to 27 units
0. causes a phase transition. Directly
above, the amplitudéull circles)
and temporal frequencydonuts
of the dominating pattern are plot-
1.0 ted over the distancé. In the top
right corner, the power spectra of
the dominating patterns are plot-
ted for all values of.
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Initially the system is prepared in a coherent oscillatory station plot. These patterns are normalized with respect to the
tionary state. Then the connectivity is changed by movindargest amplitude. Under variation dtthe system undergoes
the terminal of the inhomogeneity ®f=B to a new location a series of spatiotemporal bifurcations. Note that these pat-
X,=C, whereas the other terminal stays constant,atA. terns are not harmonic due to the inhomogeneous connection
The change in the connection topology destabilizes the initialopology. Shifts in the frequency spectpotted on the right
stationary dynamics, and the system undergoes a transition for all distancesd) are observed, even though the spatial
a new stationary state. Without the inhomogeneous connegattern remains qualitatively the same. Hysteresis effects are
tions the zero-activity state is stationary and stable. The paound, resulting in an asymmetry of the bifurcation path be-
rameters used for the integration of Eq) arev=3, I low and aboved=1I"/2. Above the bifurcation plot the cor-
=, a=2.5, 0=0.7, 0,=0,=0.1, andf,,=f,;=1. The responding amplitud&ull circles) of the locationx, and its
time step isdt=0.02, the space is divided into 100 unjgge temporal frequency are plottédonutg overd (see Fig. 4.
Fig. 3. We described macroscopic coherent pattern formation in
We investigate the dynamics in more detail by varying thea spatially continuous neural system system with a heteroge-
control parameted systematically from O to its maximal neous connection topology. Local changes of connecting
value d=TI". Due to the periodic boundary conditions, a pathways may guide the neural system through a series of
valued>TI'/2 reduces the relative distance between the inhoglobal spatiotemporal bifurcations.
mogeneities. The inhomogeneity xt is kept constant, and
X,=X4+d is varied. For each distanckthe system dynam- This research was supported by NIMH and The Human
ics becomes stationary, and then the spatial pattern at maxrrontiers Science Project. V.K.J. wishes to thank Hermann
mum amplitude is extracted and plotted ogein a bifurca- Haken for interesting and helpful discussions.
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